
Rob McGill
Head of Mining
WorleyParsonsTWP
Contents

• Underground Mining Trends
• Mine Life-cycle
• Key Success Factors for Mine Planning and Design
• Mine Planning Process and Tools
• Examples of Outputs
• Expected developments in Underground Mining
• Conclusion
Underground Mining Trends

- Low commodity prices/tight margins
- Fewer projects meeting hurdle rates
- Access to funding/risk aversion
- Deeper underground deposits
- Higher opex costs
- Safety and regulation
- But demand for commodities will be lasting
- Increased underground focus
 - Mature pits
 - Environmental pressures
Mine Life-cycle

- **Resource Definition**: Target Identification, Exploration, Resource Estimate
- **Project Evaluation Phase**: Concept/Scoping, Pre-feasibility, Feasibility
- **Mine Construction Phase**: Detailed design, Project Execution
- **Mine Production Phase**: Build-up, Steady state
- **Mine Closure**: Production decline, Rehab and closure
Value Curve

- **Exploration**: Value = Cost
- **Development (Dev)**: Value = NPV
- **Construction**: Value = Market
- **Production**: Value = Capitalization
- **Closure**:

![Diagram showing value curve with stages and key metrics.](image-url)
<table>
<thead>
<tr>
<th>Phase</th>
<th>Objective</th>
<th>Key Focus Areas</th>
<th>Costs</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONCEPT/PEA</td>
<td>• To identify major options for opportunity realisation</td>
<td>• Is this the right opportunity for the client?</td>
<td>Capital Cost</td>
</tr>
<tr>
<td></td>
<td>• Confirm alignment with the business case</td>
<td>• Is the opportunity consistent with the client’s overall business strategy?</td>
<td>+ / -25%</td>
</tr>
<tr>
<td></td>
<td>• Assess the potential value of the opportunity</td>
<td>• Does the potential value from the opportunity justify further investigation?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Define the work required to assess the opportunity</td>
<td>• The thoroughness of evaluation of alternative technology, costing and implementation approaches.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Establish a plan for the Pre-Feasibility phase</td>
<td>• Integrity of Pre-feasibility planning.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Have areas of opportunity and risk been investigated in later stages to enhance value?</td>
<td></td>
</tr>
<tr>
<td>Phase</td>
<td>Objective</td>
<td>Key Focus Areas</td>
<td>Costs</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td>--</td>
<td>---------------------</td>
</tr>
</tbody>
</table>
| PRE-FEASIBILITY | • The best project size, scope, technical and production solution has been selected and is a viable business concept aligned to business strategy.
• Demonstration that all the discarded project options have been studied and are clearly inferior and have no probability of re-emerging as viable options.
• A workable plan for taking the concept through the Feasibility development stage. | • Have all of the options been adequately considered and reviewed on an equal basis?
• What criteria were used to select the preferred option?
• Have all opportunities for optimisation been reasonable pursued?
• Are the risks and possible mitigators well understood?
• Does the potential value from the opportunity still justify further investigation?
• Integrity of Feasibility planning. | Capital Cost
+ 25% to –15% |
<table>
<thead>
<tr>
<th>Phase</th>
<th>Objective</th>
<th>Key Focus Areas</th>
<th>Costs</th>
</tr>
</thead>
</table>
| FEASIBILITY | • Develop a Proven Business proposition at the appropriate level of detail and accuracy for implementation funding. | • Is there a thorough understanding of the value and risks associated with the opportunity prior to moving into Implementation?
• Is there an acceptable risk profile?
• Is there a workable plan for taking the Project through the implementation & Operational readiness stages?
• Is the opportunity recommended for approval? | Capital Cost + 15% to – 5% |
Typical Project Organogram
Key Success Factors for Mine Planning and Design

- Quality/quantity of inputs
- Understanding of value chain and link between inputs and outputs
- Experience and skill
 - Mining operations and projects
 - Planning tools
- Team integration
- Consistency and applicability of design criteria
- Benchmarking/callibration
Mine Planning and Design Inputs

- Geology
 - Block Model
 - Geometric and structure model
 - Stratigraphic model

- Geotechnical
 - Rock Mass ratings
 - Empirical design “rules-of-thumb”

- Ventilation
 - Empirical design “rules-of-thumb”
 - Regulatory design criteria
 - Mining equipment specifications

- Mining Engineering
 - Mining method
 - Development and stoping rates
 - Preferred equipment specs
 - Targeted production schedule and volumes

- Infrastructure
 - Preferred access methodology
 - Requirements for services/transport
 - Capacities and constraints

- Strategic Goals
 - Life-of-mine
 - Payback Period
 - Financial goals
Mining Method Selection

Common Methods
• Block Cave
• Sub-level cave
• Open-stoping
• Sub-level open-stoping
• Cut and fill
• Drift and fill
• Shrinkage
• Bord-and-pillar
• Step bord-and-pillar
• Narrow flat tabular

Design Considerations
• Ore body geometry
• Rock Mass properties
• Required production volumes
• Opex/Capex cost
• Safety/Productivity
• Skills available
• Equipment available
• Grade control
Access Methodologies

• Declines
 – Drill and blast
 – TBM
• Ramps
• Shafts
 – Blind-sink
 – Raise-bored
 – Bored
• Combinations

• Criteria:
 – Depth/Geometry
 – Timing
 – Bottom Access
 – Production Volume
 – Cost and capital availability
Project Construction Time

- Development time in months
- Depth in metres

- Drill and Blast
- TBM
- Conventional Shaft
- Bored Shaft
Advantages of TBM Access Development

Seems obvious
Quicker
One pass
Safer
Continuous and reliable
But slow to catch on in mining
Hard rock applications and non-isotropic/non-homogenous material
High rock stress and fracturing
Geometry and size of equipment
Lack of hands-on experience
Seen as expensive and elegant
Mine Planning Software Tools

• Gemcom – Surpac/Mineshed/Minex
• CAE – 5D Planner / Enhanced Production Scheduler (EPS)
• MINERP – CADSmine / No scheduler (Reporting done in spreadsheets)
• MINERP – MINE2-4D / Enhanced Production Scheduler (EPS)
DESIGN CRITERIA OVERVIEW

- 29.486 Moz
- LoM – 43 years (2052)
- Building up to 330 Kt/m
- To produce up to 800,000 ounces/ year (25 tonnes)
Project Footprint
Production Profile

![Production Profile Graph]

- BP12 Level 1
- Phase 2
- Phase 3
Mine Design Criteria

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stoping Design</td>
<td>Sequential Grid Mining Method</td>
</tr>
<tr>
<td>Mining Levels</td>
<td>113,116,120</td>
</tr>
<tr>
<td>ORD development rate</td>
<td>45m/month</td>
</tr>
<tr>
<td>Reef development rate</td>
<td>30 m/month</td>
</tr>
<tr>
<td>Mining Crews per raise line (between levels)</td>
<td>5 maximum</td>
</tr>
<tr>
<td>Ledging Face Advance</td>
<td>10 m/month (average)</td>
</tr>
<tr>
<td>Stope Face Advance</td>
<td>7.2 m/month (average)</td>
</tr>
<tr>
<td>Ledging crews (between levels)</td>
<td>Dependant on available raise lines – with not more than 3 crews per raise line</td>
</tr>
<tr>
<td>Stope Width</td>
<td>120 cm</td>
</tr>
<tr>
<td>Panel Length</td>
<td>25 m to 35 m</td>
</tr>
<tr>
<td>MCF (as per BP2013)</td>
<td>60%</td>
</tr>
<tr>
<td>Plant recovery factor</td>
<td>97.4%</td>
</tr>
</tbody>
</table>
Project Carbon Leader reef monthly m²

- Average – 4500 m²/month

Project Carbon Leader produced monthly kilogram

- Average – 120kg/month

Project Carbon Leader reef monthly tonnes milled

- Average – 23000 tonnes/month

Project Carbon Leader monthly total metre

- Average – 253m/month
Thickness and Grade Distribution

<table>
<thead>
<tr>
<th>THICKNESS</th>
<th>COLOUR</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 2</td>
<td>Red</td>
</tr>
<tr>
<td>2 - 4</td>
<td>Green</td>
</tr>
<tr>
<td>4 - 6</td>
<td>Yellow</td>
</tr>
<tr>
<td>6 - 8</td>
<td>Purple</td>
</tr>
<tr>
<td>> 8</td>
<td>Blue</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GRADE</th>
<th>COLOUR</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 2.2</td>
<td>Black</td>
</tr>
<tr>
<td>2.2 - 4</td>
<td>Cyan</td>
</tr>
<tr>
<td>4 - 6</td>
<td>Green</td>
</tr>
<tr>
<td>6 - 8</td>
<td>Yellow</td>
</tr>
<tr>
<td>8 - 10</td>
<td>Orange</td>
</tr>
<tr>
<td>10 - 15</td>
<td>Red</td>
</tr>
<tr>
<td>15 - 20</td>
<td>Pink</td>
</tr>
<tr>
<td>20 - 100</td>
<td>Black</td>
</tr>
</tbody>
</table>
Isometric View of Design Options

Longitudinal Sub Level Open Stoping

Longitudinal Retreat
Animation output

Different colours represent different months schedule.

Existing infrastructure

Existing mining
Production Report

Production Report fed from outputs of Enhanced Production Scheduler

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. PRODUCTION</td>
<td></td>
</tr>
<tr>
<td>Grade</td>
<td></td>
</tr>
<tr>
<td>Furnace 5&6</td>
<td>Tons</td>
<td>87,506</td>
<td>87,506</td>
<td>87,507</td>
<td>70,450</td>
<td>67,738</td>
<td>322</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Furnace 5&6</td>
<td>Tons</td>
<td>372,394</td>
<td>374,305</td>
<td>198,017</td>
<td>203,308</td>
<td>370,090</td>
<td>331,196</td>
<td>375,750</td>
<td>462,909</td>
<td>371,774</td>
<td>441,024</td>
<td>462,694</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>4G Export</td>
<td>Tons</td>
<td>620,004</td>
<td>625,001</td>
<td>905,005</td>
<td>1,076,915</td>
<td>495,000</td>
<td>772,203</td>
<td>1,174,925</td>
<td>785,002</td>
<td>979,002</td>
<td>502,005</td>
<td>492,000</td>
<td>463,000</td>
<td>497,000</td>
<td>600,000</td>
<td>507,007</td>
<td></td>
</tr>
<tr>
<td>4G Export</td>
<td>Tons</td>
<td>355,934</td>
<td>610,934</td>
<td>495,934</td>
<td>570,947</td>
<td>616,958</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>43 Export</td>
<td>Tons</td>
<td>306,208</td>
<td>316,925</td>
<td>270,920</td>
<td>312,622</td>
<td>340,592</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>40 Export</td>
<td>Tons</td>
<td>276,215</td>
<td>232,358</td>
<td>273,631</td>
<td>168,786</td>
<td>308,187</td>
<td>236,901</td>
<td>336,171</td>
<td>478,001</td>
<td>399,002</td>
<td>236,005</td>
<td>228,006</td>
<td>336,001</td>
<td>342,000</td>
<td>334,000</td>
<td>236,000</td>
<td>332,000</td>
</tr>
<tr>
<td>Total Tonnage 2 Product</td>
<td>Tons</td>
<td>417,164</td>
<td>197,996</td>
<td>-</td>
<td>265,900</td>
<td>445,886</td>
<td>429,677</td>
<td>407,046</td>
<td>735,846</td>
<td>718,899</td>
<td>683,143</td>
<td>1,019,641</td>
<td>931,766</td>
<td>908,976</td>
<td>678,000</td>
<td>692,728</td>
<td>612,696</td>
</tr>
<tr>
<td>Total Tonnage</td>
<td>Tons</td>
<td>1475,255</td>
<td>1,707,350</td>
<td>1,477,350</td>
<td>1,537,177</td>
<td>1,340,000</td>
<td>1,735,477</td>
<td>1,752,479</td>
<td>1,765,073</td>
<td>1,634,050</td>
<td>1,657,721</td>
<td>1,633,448</td>
<td>1,717,406</td>
<td>1,774,015</td>
<td>1,794,007</td>
<td>1,885,007</td>
<td></td>
</tr>
<tr>
<td>2. MINING</td>
<td></td>
</tr>
<tr>
<td>Percent Fine</td>
<td></td>
</tr>
<tr>
<td>Fines</td>
<td>10.93%</td>
<td></td>
</tr>
<tr>
<td>5&6 600</td>
<td>10.93%</td>
<td></td>
</tr>
<tr>
<td>5&6 910</td>
<td>10.93%</td>
<td></td>
</tr>
<tr>
<td>5&6 1100</td>
<td>10.93%</td>
<td></td>
</tr>
<tr>
<td>5&6 1300</td>
<td>10.93%</td>
<td></td>
</tr>
<tr>
<td>3. FINE MATERIAL</td>
<td></td>
</tr>
<tr>
<td>Gravel</td>
<td>10.93%</td>
<td></td>
</tr>
<tr>
<td>Fine Material</td>
<td>10.93%</td>
<td></td>
</tr>
<tr>
<td>4. SUPER FINE</td>
<td></td>
</tr>
<tr>
<td>Super Fine</td>
<td>10.93%</td>
<td></td>
</tr>
<tr>
<td>5. SLUDGE</td>
<td></td>
</tr>
<tr>
<td>Sludge (Not incl. in production)</td>
<td>Tons</td>
<td>210,465</td>
<td>241,106</td>
<td>210,317</td>
<td>228,817</td>
<td>231,943</td>
<td>214,000</td>
<td>247,517</td>
<td>251,108</td>
<td>233,728</td>
<td>242,386</td>
<td>242,197</td>
<td>242,789</td>
<td>243,548</td>
<td>219,351</td>
<td>262,261</td>
<td></td>
</tr>
<tr>
<td>Total Production</td>
<td>Tons</td>
<td>1,093,046</td>
<td>2,192,299</td>
<td>1,093,036</td>
<td>2,026,035</td>
<td>2,077,030</td>
<td>2,456,076</td>
<td>2,214,062</td>
<td>2,247,103</td>
<td>2,197,019</td>
<td>2,156,139</td>
<td>2,161,765</td>
<td>2,130,069</td>
<td>2,170,130</td>
<td>2,197,295</td>
<td>2,173,130</td>
<td></td>
</tr>
</tbody>
</table>

Organized by Technology MINC
DEMINC
INSTITUTE OF MINES
TECNOLOGIA
INSTITUTO MINERAL"
Vertical shaft access
Longitudinal Sub Level Stoping / Bench and Fill Stoping
Expected Developments in Underground Mining

• Increased mechanization and automation
• Tunnel and shaft boring
• Environmental/safety pressures
• Margin pressures
• Better quality design and planning
• More standardization in design and planning
Conclusion

- Mine design and planning has become more critical in projects and operations in recent years.
- Quality of tools have improved with better computer graphics and processing speeds.
- Projects now require full designs and plans using software tools for auditability.
- These designs and plans are only as good as the inputs provided and the skills of the engineers and planners. Actual hands-on mining experience is critical in applying the tools correctly.